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Abstract. The pore-formation activity of monomeric
and oligomeric forms of different Cry1 toxins (from
Cry1A to Cry1G) was analyzed by monitoring ionic
permeability across Manduca sexta brush border
membrane vesicles. The membrane vesicles were
isolated from microvilli structures, showing a high
enrichment of apical membrane markers and
low intrinsic K+ permeability. A fluorometric assay
performed with 3,3¢-dipropylthiodicarbocyanine
fluorescent probe, sensitive to changes in membrane
potential, was used. Previously, it was suggested that
fluorescence determinations with this dye could be
strongly influenced by the pH, osmolarity and ionic
strength of the medium. Therefore, we evaluated
these parameters in control experiments using the
K+-selective ionophore valinomycin. We show here
that under specific ionic conditions changes in fluo-
rescence can be correlated with ionic permeability
without effects on osmolarity or ionic strength of the
medium. It is extremely important to attenuate the
background response due to surface membrane po-
tential and the participation of the endogenous per-
meability of the membrane vesicles. Under these
conditions, we analyzed the pore-formation activity
induced by monomeric and oligomeric structures of
different Cry1 toxins. The Cry1 toxin samples con-
taining oligomeric structures correlated with high
pore activity, in contrast to monomeric samples that
showed marginal pore-formation activity, supporting
the hypothesis that oligomer formation is a necessary
step in the mechanism of action of Cry toxins.

Key words: Bacillus thuringiensis — Pore-forming
toxin — Manduca sexta — Membrane potential —
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Introduction

The Cry toxins found in different Bacillus thuringiensis
(Bt) strains cause mortality to susceptible insects by
lysing the midgut epithelium cells [1, 2]. In order to
exert their toxic effect, a transition from crystal inclu-
sion protoxins tomembrane-inserted pores is required.
In the case of the Cry1A toxins, it was reported that
they interact sequentially with two protein receptors
located in the apical membrane of Manduca sexta
larvae midgut cells [3, 4]. The interaction of the
monomeric Cry1A with the cadherin receptor induces
toxin oligomerization [4, 5]. The oligomerization of
Cry1A toxin increases its affinity to the second recep-
tor, aminopeptidase-N. Aminopeptidase-N localizes
the toxin in membrane microdomains, where it is in-
serted and induces the formation of ionic pores [4, 6].
These ionic pores shunt the potential difference gra-
dient and disrupt the K+ and H+ gradients, affecting
nutritional uptake with eventual lysis of the midgut
cells [2]. It was proposed that the oligomeric structure
of Cry1A toxin is an intermediary in the process of
membrane insertion; it is defined as pre-pore since it is
formed outside of the membrane after interacting with
cadherin and the cleavage of helix a-1 [5]. The pre-pore
is an insertion-competent structure that produces sta-
ble channels in black lipid bilayers with high open
probability in contrast to the monomeric structure [7].
The structural changes of Cry toxins during oligo-
merization and insertion into the membrane are not
known. The Cry1Ab pre-pore is soluble at low con-
centrations, displays new hydrophobic surfaces with
respect to the monomeric form and is highly resistant
to heat denaturalization [8]. However, the formation
of Cry oligomeric structures has been demonstrated
only for Cry1Ab and Cry3 toxins [5, 7, 9]. In this work,
we analyzed the oligomer formation of different Cry1
toxins and correlated the presence of their oligomeric
structures with high pore-formation activity.Correspondence to: A. Bravo; email: bravo@ibt.unam.mx
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Different approaches have been used in the study
of the pore activity of Cry toxins. We have routinely
used a fluorescent dye sensitive to changes in mem-
brane potential, 3,3¢-dipropylthiodicarbocyanine
iodide (diSC3[5]) [5, 8, 10, 11]. Fluorescent probes
that sense transmembrane potential differences [12]
have been extensively used to detect rapid changes in
membrane potential of cells, organelles and vesicles
[13]. The sensitivity of the cyanine dye diSC3(5) to
membrane voltage depends on the fact that it has a
delocalized positive charge and behaves as a
permeant cation. The membrane potential drives its
distribution between the inside of the vesicles and the
medium. When the vesicles are hyperpolarized, the
dye is accumulated in the vesicle and its fluorescence
is quenched due to the formation of dye aggregates
[14]. The response time of the measurement is short
[12, 13], and changes in fluorescence level are directly
associated to changes in membrane potential induced
by the changes in ionic flux. However, the use of this
system to determine pore formation by Cry toxins
has been questioned [15]. Here, we validated the use
of diSC3(5), showing that under specific ionic condi-
tions, where the surface membrane potential is
shielded and the intrinsic permeability is inhibited,
the ionic strength and osmolarity have no effects on
the analysis of membrane potential of M. sexta
membrane vesicles and changes in fluorescence can be
correlated with ionic permeability induced by Cry
toxins.

Our data show that the oligomeric structure of
different Cry1 toxins works like a permeant pore,
where the ions move as a function of the electro-
chemical gradient through the toxin pore, changing
the membrane potential of the vesicle. The mono-
meric toxins showed a marginal effect, confirming
that the oligomeric structure of Cry toxins is
the intermediate responsible for insertion into the
membrane.

Materials and Methods

PREPARATION OF BRUSH BORDER MEMBRANE VESICLES

Brush border membrane vesicles (BBMVs) were prepared from

isolated microvilli structures purified from midgut tissue of

M. sexta fourth instar larvae [16]. Briefly, the midgut epithelium

cells were dissociated by 1-h incubation of the midgut tissue in 100

ml phosphate-buffered saline (PBS) supplemented with 5 mM

ethylenediaminetetraacetic acid (EDTA), 5 mM ethyleneglycoltet-

raacetic acid (EGTA), 1 mM phenylmethyl sulfonyl fluoride

(PMSF) and 100 lg/ml leupeptin. Cells were collected by centri-

fugation for 5 min at 120 · g and washed three times with PBS.

Isolated cells were homogenized by gentle mechanical disruption

(2–4 min in vortex at maximal velocity), loaded in a 12-ml linear

Percoll density gradient (10–35%; Sigma, St. Louis MO) in PBS

and centrifuged for 10 min at 2,500 · g in a swing rotor (5804R;

Eppendorf, Hamburg, Germany) at 4�C. The gradients were frac-

tionated, and fractions containing the microvilli structures were

selected by microscopy observations. The microvilli fractions were

suspended in 150 mM KCl, 10 mM 4-(2-hydroxyethyl)-1-piperazi-

neethanesulfonic acid (HEPES)-HCl (pH 7) and washed three

times by centrifugation. Finally, they were sonicated for six periods

of 30 sec each at 25�C (Branson 1200 Sonic Bath; Branson, Dan-

bury, CT) in the same solution. BBMV enrichment was estimated

according to the alkaline phosphatase (ALP) and aminopeptidase-

N (APN) activity (22- and 35-fold increase/mg protein, respec-

tively) relative to the initial homogenate. APN activity was assayed

using L-leucine-p-nitroanilide as substrate [11] and APL, using p-

nitrophenyl phosphate as substrate [17].

PREPARATION OF SMALL UNILAMELLAR VESICLES

Egg-derived phosphatidylcholine (PC) lipids from a chloroform

stock (Avanti Polar Lipids, Alabaster, AL) were mixed in glass vials

at 2.6 lmol total and dried by argon flow evaporation, followed by

overnight storage under vacuum to remove residual chloroform.

The lipids were hydrated in 2.6 ml of HEPES 10 mM, 150 mM KCl

(pH 7) by a 30-min incubation period, followed by vortexing. To

prepare small unilamellar vesicles (SUVs), the lipid suspension was

subjected to sonication five times for 5 min in the Branson 1200

bath sonicator. Liposomes were used within 4–5 days of their

preparation. Liposomes were prepared at 1 mM total lipid con-

centration and diluted to the required concentration just before use.

PREPARATION OF INSECTICIDAL CRYSTAL PROTEINS

Cry1Ab crystals were produced in Bt strain 407cry) transformed

with pHT315–1Ab plasmid. Cry1Ab crystals were purified by

sucrose gradients and protoxin solubilized in 50 mM Na2CO3

(pH 10.5), 0.2% b-mercaptoethanol at 37�C for 2 h [18]. The

oligomeric and monomeric forms of Cry1Ab toxin were produced

by incubating Cry protoxin for 1 h with scFv73 antibody in a

mass ratio of 1:4 and digested with midgut juice (5%) for 1 h at

37�C. PMSF, 1 mM, was added to stop the reaction. Finally,

the monomeric and oligomeric forms of Cry1Ab were purified by

size-exclusion chromatography in a Superdex 200 HR 10/30

(Amersham Pharmacia Biotech, Uppsala, Sweden) as previously

reported [7, 19].

The Cry1Aa, Cry1Ca, Cry1Da, Cry1Ea, Cry1Fa and Cry1Ga

protoxins were obtained as recombinant proteins expressed in

Escherichia coli. The inclusion bodies were solubilized and purified

as described [20]. The monomeric structure of the toxins was

produced by activation of protoxins with trypsin in a mass ratio of

1:20 for 1 h at 25�C. PMSF was added to a final 1 mM concen-

tration to stop proteolysis. The oligomeric structure of these toxins

was produced by incubation of 100 lg of each Cry protoxin for 15

min at 25�C with 10 lg of BBMV isolated from M. sexta midgut

tissue in the absence of protease inhibitors; the reaction was stop-

ped with 1 mM PMSF, and samples were centrifuged (20 min at

12,000 x g) [5, 9]. Protein concentration was determined in the

supernatant by Bradford assay using bovine serum albumin as

standard.

FLUORESCENCE MEASUREMENTS

Electrical potential differences were measured using the positively

charged potential-sensitive dye diS-C3-(5) (Molecular Probes,

Eugene, OR). Fluorescence was recorded at the 620/670 nm

excitation/emission wavelength pair using an Aminco Bowman

(Urbana, IL) luminescence spectrometer as in [10]. Stock dye

solution, 0.5 ll (1 mM in dimethyl sulfoxide), was added to 0.9 ml

of buffer solution (150 mM tetramethylammonium chloride

[TMA-Cl], 2 mM CaCl2,10 mM HEPES [pH 7]) in a 1-cm path
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length cuvette, and the maximal initial fluorescence (Fi) was mea-

sured (Fig. 1A). For some experiments, TMA-Cl was substituted

with 150 mM methylglucamine chloride (MeGluCl), NaCl or KCl,

as indicated in the text. BBMVs (10 lg) or SUVs (15 lM) previ-
ously loaded with 150 mM KCl as described above were added (Fo).

All determinations were made at 25�C with constant stirring.

Dye calibration and determination of resting membrane

potential were performed in the presence of valinomycin (0.1 lM)
by successive additions of KCl (Fn1 = 1, Fn2 = 2.5, Fn3 = 6,

Fn4 = 12.5, Fn5 = 26, Fn6 = 52, mM final concentration). The

changes in fluorescence were normalized as percentage of changes

in fluorescense arbitrary units

(% D FAU) = [(Fn - Fo)/Fi] · 100, where Fn is the FAU at the

different KCl calibrations and Fo is the FAU at the equilibrium

obtained after BBMV or SUV addition to the dye in solution. The%

D FAU vs. K+ equilibrium potential (EK in mV) was determined,

and the slope (m) of this curve is directly correlated with the per-

meability. The EK was calculated with the Nernst equation. Chan-

ges in fluorescence determinations were done at least four times.

INSECTS BIOASSAY

Bioassays were performed with M. sexta neonate larvae by surface

contamination method [5]. Toxin solution was poured on the diet

surface and allowed to dry. Neonate M. sexta larvae were placed

on the dried surface and the mortality was monitored after 7 days.

Results

MEMBRANE POTENTIALCALIBRATIONS IN BBMVS AND IN

SUVS LIPOSOMES

Valinomycin, a K+-selective ionophore, was used to
induce a K+-diffusion potential, as given by the

Nernst relation EK = 25.69 ln [K+]out/[K
+]in,

assuming that the K+ conductance due to valino-
mycin overwhelms the intrinsic ionic conductance of
the BBMV. Figure 1 shows the fluorescence response
to changes in the K+-diffusion potential by varying
external K+ concentration in the presence of
valinomycin in BBMVs isolated from M. sexta larvae
(Fig. 1A) and in SUVs (Fig. 1B) suspended in
150 mM TMA+, 2 mM CaCl2 (pH 7.0). Control traces
corresponding to intrinsic permeability to KCl of the
isolated BBMVs or SUVs showed no permeability in
the absence of valinomycin. These control traces
indicated that under these conditions the vesicles had
very low intrinsic K+ permeability and that there
were no artifacts during calibration. The maximal
value of traces is due to the fluorescence of the dye in
solution (Fi). After BBMV or SUV addition, the dye
distributes across the membrane according to the
potential, achieving a stable fluorescence signal (Fo).
Addition of valinomycin increases K+ permeability,
leading to efflux from the vesicles, which results in
membrane hyperpolarization, inward flow of the dye
and quenching of the fluorescence (Fn). Finally,
successive additions of KCl (1–50 mM final concen-
tration) generated different K+-diffusion potentials
across the vesicles. These depolarizations were pro-
duced with the consequent outward flow of the dye
(Fn1, Fn2, Fn3, Fn4 ...).

A bonus in the valinomycin calibration proce-
dure is the estimation of the resting potential of the
vesicles (ER = Fo). When the intra-/extracellular K+

concentrations are known, the diffusion potentials
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Fig. 1. K+-diffusion potential induced by valinomycin. Fluorescence response induced by 0.1 lM valinomycin in BBMVs isolated from

M. sexta larvae (A) or in SUV liposomes (B) suspended in 150 mM TMA+, 2 mM CaCl2 (pH 7.0). The fluorescent dye diSC3(5) was used at

0.2 lM, and the successive additions of KCl (Fn1–Fn6) were 1, 2.5, 6, 12.5, 26 and 52 mM final concentration, respectively. The resting

membrane potential was estimated from the curve of the percentage of changes in fluorescence arbitrary units (% D FAU) vs. K+

equilibrium potential (EK, in mV) (C). White circles, BBMVs; black circles, SUVs.
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(EK) can be calculated by the Nernst equation. The
cyanine dye response is calibrated in order to deter-
mine the external K+ concentration at which the
signal equals the Fo, known as the null point. At
the null point, the K+ concentration ratio equals the
value at the resting membrane potential Fo and ER

could be calculated. The percentage changes in fluo-
rescence were plotted against EK (Fig. 1C); a
straight line was obtained, where the intercept with
the x axis indicates the resting membrane potential
(ER = )30.9 or )50 mV for BBMVs or SUVs,
respectively). The slope is a relative measure of K+

permeability induced by valinomycin in BBMVs
(m = 0.19) or SUVs (m = 0.42).

The ER of the BBMVs was also determined when
different monovalent ions (150 mM N-methyl-D-
glucamine [NMDG+] or 150 mM Na+) were used to
replace the TMA+ in the external solution (150 mM

monovalent ion, 2 mM CaCl2,10 mM HEPES [pH 7]).
We found that the ER has a similar value under these
conditions ()30 ± 4 mV), as expected if the basal
permeability of BBMVs to NMDG+, TMA+ and
Na+ were low.

It is important to determine the adequate con-
centrations of cyanine dye and valinomycin since the
characteristics of different BBMV preparations may
vary. High concentrations of cyanine (>2 lM) can
induce a depolarization; the optimal cyanine con-
centration ranged between 0.2 and 1 lM. We deter-
mined that 0.5–1 lM valinomycin is enough to
clamp the membrane potential to EK and produce a
stable fluorescent signal.

EFFECT OF SURFACE POTENTIAL, OSMOLARITY, AND

IONIC STRENGTH ON MEMBRANE POTENTIAL

DETERMINATIONS

Biological membranes possess fixed charges on their
surface, producing a surface potential [21]. The ionic
strength has an important effect on the surface
potential since mobile ions in the external medium
shield the exposed charge on the membrane surface
[21]. In addition, since the phosphate group can be
protonated depending on the pH, changes in pH can
also affect surface potential by altering the ionization
state of the phospholipids [21]. Figure 2 shows that in
the absence of divalent cations on the external med-
ium the fluorescent dye responded to K+ calibra-
tions. This response could be due to changes in
surface potential or to the presence of an endogenous
K+ permeability sensitive to inhibition by CaCl2 and
MgCl2. The successive additions of KCl could par-
tially shield the exposed negative charges of the
membrane, and the surface potential fell off, resulting
in changes in the fluorescence of the dye. However, in
the presence of 2 mM CaCl2 or MgCl2, the negative
surface potential of the membrane could be shielded

and the endogenous K+ permeablility could be
inhibited, resulting in a small response of the BBMVs
to KCl additions (Fig. 2).

A previous report suggested that osmolarity and
ionic strength have a dramatic effect on cyanine
diSC3(5) dye sensibility and on the estimations of the
changes in membrane potential [15]. In order to
analyze the effect of ionic strength and osmolarity in
our determinations of BBMV membrane potential,
we analyzed the K+ permeability induced by
valinomycin under steady-state conditions where
background response is reduced by the presence of
divalent cations in the external solution. The relative
K+ permeability was determined by analyzing the
slope (m) of the curve of % D FAU vs. EK (Fig. 3A),
and the resting membrane potential of the BBMVs
(Fig. 3B) was determined as described above. The
external solution (150 mM TMA+, 2 mM Ca2+) was
supplemented with 150 mM sucrose or 150 mM NaCl
in order to increase the osmolarity or the ionic
strength, respectively. Figure 3A shows that the m
values were very similar under these conditions,
suggesting that the relative K+ permeability was not
affected by changes in osmolarity or in ionic strength.
Similarly, no significant statistical differences were
found in the estimated ER values under these condi-
tions (Fig. 3B).
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PERMEABILITY INDUCED BY CRY1AB TOXIN IN

M. SEXTA BBMVS

Figure 4A shows a representative trace of the changes
in membrane potential induced by pure Cry1Ab
oligomeric toxin. Addition of 2.5 nM of the oligo-
meric Cry toxin to BBMVs at pH 7 produced a fast
hyperpolarization. The response of the dye to KCl
additions was increased when the oligomeric Cry1Ab
toxin was added to the vesicles, in contrast to control
traces in which the same amount of buffer or 2.5 nM
monomeric Cry1Ab toxin was added. After each KCl
addition, a new membrane potential was established
and a depolarization produced. Figure 4B is a sum-
mary of the m values for each condition. The slope
obtained with 0.5 nM of oligomeric Cry1Ab demon-
strated that the K+ permeability induced by Cry1Ab
is dose-dependent. In addition, Figure 4B shows that
the oligomeric structure has higher activity than the
monomeric structure at the same concentration.

PERMEABILITY INDUCED BY OLIGOMERIC STRUCTURES OF

DIFFERENT CRY1 TOXINS IN M. SEXTA BBMVS

M. sexta is susceptible to other Cry toxins: Cry1Aa,
Cry1Ca, Cry1Da, Cry 1Ea and Cry1Fa (Table 1). We
anticipated that the mechanism of action of these Cry
toxins also involves the formation of an oligomeric
structure that is insertion-competent. In order to
analyze the oligomerization and the pore-formation
activity of these toxins, pure protoxin preparations
were activated by 15-min incubation with M. sexta

BBMVs isolated in the absence of protease inhibitors
at 25�C. As control, these protoxins were activated
by trypsin treatment (1 h 1:20 at 25�C) (Fig. 5A).
Previously, we showed that Cry1Ab protoxin acti-
vated with trypsin produced only the monomeric
structure [5]. We also showed that Cry1Ab could be
activated by 15-min incubation withM. sexta BBMVs
isolated without protease inhibitors, inducing forma-
tion of the pre-pore oligomeric structure [5], suggest-
ing the existence of proteases associated with BBMVs.
Incubation with BBMVs promoted the formation of a
250-kDa oligomeric structure of all these Cry1 toxins
(Fig. 5B). We analyzed the K+ permeability induced
by Cry toxin samples activated with trypsin or with
M. sexta BBMVs at 1.4 lg protein per reaction. The
samples activated with BBMVs showed formation of
an oligomeric structure (Fig. 5B) and resulted in
higher pore-formation activity (Fig 5C) compared
with the samples activated with trypsin that contained
only the monomeric structure (Fig. 5A, C). As a
control, we included Cry1Ga toxin, which is not active
against M. sexta larvae (Table 1); and it did not in-
duce K+ permeability in M. sexta membranes
(Fig. 5C). Nevertheless, the oligomer formation of
Cry1Ga could not be analyzed since the Cry1Ab
polyclonal antibody does not react with Cry1Ga.

Discussion

The pore-formation activity of Cry toxins is an
important step during insect intoxication and a cause
of the cell lysis of the midgut epithelium. However,
many unanswered questions remain regarding Cry
pore-formation activity and the characteristics of the
toxin after insertion into the membrane. Different
strategies have been used to explore pore-formation
activity of Cry toxins. Studies with isolated BBMVs
represent a powerful tool in analyses of the cellular
mechanisms involved in transmembrane transport,
the interaction of Cry toxins with their receptors and
their pore-formation activity. The purification of
BBMVs is of key importance to avoid misleading
interpretations due to contamination with other cell
membranes harboring additional proteins. The
intrinsic K+ permeability observed in BBMVs may
represent ionic channels that are normally present in
the microvilli membrane or channels from basolateral
membrane cross-contamination produced during
BBMV preparation. We have developed a method-
ology to purify BBMVs from isolated microvilli
structures rather than from whole midgut homoge-
nate that resulted in a high enrichment of microvilli
aminopeptidase (35-fold) and ALP (22-fold) and in
reduced intrinsic K+ permeability [16].

In this work, we validated the use of a fluoro-
metric assay to analyze the changes in membrane
potential produced by Cry1Ab toxin. One advantage
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of the membrane potential measurements is their ra-
pid response time and the possibility of analyzing the
efficiency in the permeability of a particular ion
independently of its contra-ion, an important differ-
ence when comparing with light-scattering assays that
analyze the permeability of both cation and anion at
the same time. We show here that for membrane
potential measurements it is extremely important to
screen the surface potential that most biological
membranes possess due to the presence of fixed
charges on their surface. We used Ca2+ ions to shield
the surface potential of the membrane since it has
been shown that surface potential is far more reduced
by multivalent counterions than univalent ones [22].
In the absence of Ca2+ ions, the outer surface of the
membrane bears a net negative charge, setting a local
negative surface potential. On the other hand, we
cannot discard the presence of discrete intrinsic K+

permeability in BBMVs. In our experimental condi-
tions, the presence of 2 mM Ca2+ effectively shielded
the charged surface, reducing considerably the effects
of surface potential changes, and decreased endoge-
nous permeability (Fig. 2).

We show here that a steady-state condition can
be established in the presence of 2 mM CaCl2

under appropriate concentration of cyanine and
valinomycin. A low concentration of the cyanine dye
was recommended to avoid high concentration of the
charged dye inside the vesicles and depolarization of
the vesicles. Also, a low valinomycin concentration
was recommended to induce K+ permeability with-
out drastically modifying the chemical gradient.
In these steady-state conditions, estimations of ER

R
el

at
iv

e 
K

+
pe

rm
ea

bi
lit

y
(m

)

nic
ymo

nil
aV

lo
rtn

oC

bA1
yr

C

Mn
5.2

re
mo

gil
O

bA1
yr

C

re
mo

gil
O

5.0

Mn

bA1
yr

C

5.2
re

mo
no

M

Mn

00.0

50.0

01.0
52.0

03.0
F

A
U

(F
lu

or
es

ce
nc

e
A

rb
itr

ar
y

U
ni

ts
)

)ces(emiT
052002051001050

5.2

0.3

5.3

0.4

0.6

remogilObA1yrC

F 1n

F 2n

F 3n

F 4n
F 5n

F 1n
F 2n F 3n

F 4n
F 5n

lortnoC

A B

Fig. 4. Permeability induced

by Cry1Ab toxin in M. sexta

BBMVs. Representative

trace of changes in

membrane potential induced

by 2.5 nM Cry1Ab

oligomeric toxin and control

trace after buffer addition

(A) and relative K+

permeability (m) (B)

obtained with different

oligomeric Cry1Ab toxin

concentrations (2.5 or 0.5

nM) or Cry1Ab monomeric

toxin (2.5 nM).

Table 1. Toxicity of different Cry1 proteins to M. sexta larvae

Toxins LC50 (ng/cm
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a95% fiducial limits in parentheses.
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Fig. 5. Activation and pore-formation activity of different Cry1

toxins. Western blot analysis of the different Cry1 toxins activated

with trypsin, showing only 60-kDa monomeric toxin and some

small bands produced by toxin degradation. (A) Western blot of

the monomeric and oligomeric structures of the different Cry1

toxins obtained after activation with M. sexta BBMVs. (B) Rela-

tive K+ permeability (m) of toxin samples activated with BBMVs

(white bars, 1.4 lg) and their corresponding trypsin-activated toxin

(black bars, 1.4 lg) (C).
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can be obtained using the K+-specific ionophore
valinomycin. A linear response on the plot of changes
in fluorescence versus the EK, as predicted by the
Nernst equation, was observed. The estimation of the
BBMV ER value performed when different monova-
lent cations (Na+, TMA+ or NMDG+) were present
in the external solution showed no differences, indi-
cating that isolated BBMVs show poor permeability
to these cations.

The influence of osmolarity and ionic strength
during the ER estimation was analyzed. The changes
of these parameters were observed in the presence of
2 mM Ca2+. Under these conditions, no statistical
differences in ER and in relative K+ permeability
were observed (Fig. 3A, B). A previous report from
Kirouac et al. [15] suggested that osmolarity and
ionic strength have a dramatic effect on diSC3(5) dye
sensibility and on the estimations of changes in
membrane potential. It is important to mention that
these authors did not take into account the effects
that pH and ionic strength have on the surface
potential. Also, they used a high valinomycin con-
centration (7.5 lM) for 1-h incubation, which most
probably affected the assay by dissipating the K+

gradient. We found that if the surface potential is
shielded correctly and the endogenous permeability is
reduced, the changes in osmolarity or ionic strength
did not affect the estimations of membrane potential
performed with this fluorescent dye (Fig. 3).

Different reports have demonstrated the capacity
of Cry toxins to induce pore formation in midgut
tissues and insect midgut BBMVs using different
experimental strategies (for review, see Schwartz &
Laprade [23]). Cry toxin channels are poorly selec-
tive, transporting different ions and solutes of higher
size including sugars and amino acids [2, 23–26].
However, all these studies were done only with Cry
toxins in their monomeric state [2, 23–26]. Previously,
we showed that the oligomeric structure of Cry1Ab is
able to interact with synthetic membranes, in contrast
to the monomeric Cry1Ab structure, which has
marginal interaction with the liposomes [7]. The pore-
formation activity of the Cry1Ab oligomeric struc-
ture analyzed in synthetic planar lipid bilayers
revealed different kinetic characteristics from the
monomeric Cry1Ab toxin [7]. The responses of pure
oligomer preparations were observed at much lower
toxin concentrations than the monomeric toxin, and
the kinetics were different since oligomeric Cry1Ab
showed stable channels that had a high open proba-
bility, in contrast to the monomeric toxin, which
showed an unstable opening pattern [7].

In the present work, we reported that oligomeric
Cry1Ab at 2.5 nM has higher activity compared with
monomeric Cry1Ab toxin in BBMVs where receptors
are present and showed that pore formation was dose-
dependent (Fig. 4). These data are in agreement with
previous reports which showed that the oligomeric

structure of Cry1Ab toxin is membrane insertion-
competent and demonstrates higher pore-formation
activity than the monomeric toxin [5, 7, 9]. It is
important to mention that the increased pore-forma-
tion activity of the oligomeric structure of the Cry1A
toxins could also be due to the increased affinity of the
oligomers to the membrane and to the APN receptor
[4] and not only because the monomeric structure of
these toxins is less active.

Further work is necessary to understand the
functional characterization of these two Cry toxin
structures.

M. sexta is sensitive to several Cry toxins:
Cry1Aa, Cry1Ab, Cry1Ca, Cry1Da, Cry1Ea and
Cry1Fa (Table 1). Protoxin samples from these
toxins were activated with M. sexta BBMVs, showing
formation of an oligomeric structure (Fig. 5B), in
contrast to the same toxins activated with trypsin,
where only monomeric structures were found
(Fig. 5A). All samples of Cry1 toxins that contain a
mixture of oligomeric and monomeric structures
induced higher K+ permeability than samples
containing only monomeric toxin (Fig. 5C). These
data support the hypothesis that the oligomeric
structure of Cry toxins is the intermediate responsible
for its insertion into the membrane. Undoubtedly,
more efforts are necessary to improve our under-
standing of the differences in the mechanism of action
of each of these Cry1 toxins as well as for identifying
their specific receptors in M. sexta midgut mem-
branes.

The membrane potential-sensitive fluorescent
probe diSC3(5) is a useful and reliable tool for ana-
lyzing pore-formation activity of Cry toxins in natu-
ral or artificial membranes. This technique can be
used as a screening assay for new toxins and for novel
engineered Cry toxins.

Our thanks to Lizbeth Cabrera for technical assistance and

CONACyT J44962Q for financial support.
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